

 Navigation

 	
 next

 	Introduction to Programming with Python

Intro to Programming

Table of Contents:

	Introduction
	print(‘Hello’)

	Errors

	Object oriented programming

	Python

	Language goals

	Turtles
	Interactive interpreter

	Turtles

	Code in files

	Shape Exercises

	Numbers
	Integers & Floats

	Number Operators

	The if conditional

	Number Exercises

	Text
	Strings

	User Input

	if and elif

	Exercises

	Names
	Assignment

	Reusability

	Exercises

	Objects & Types Q&A

	Conditionals
	Code Blocks

	Equality

	The while loop

	Practicals

	Functions
	Function objects

	Arguments

	Function Scope

	Exercises

	Data Structures
	Lists

	Dictionaries

	Nesting

	The for loop

	Exercises

	Conclusions
	Programming

	Abstractions

	Design

	Exercises

	Koans (Optional)
	Making assertions

	The Koans

	Instructions

	Appendix A: Windows
	Command line 101

	The Python Interpreter

	Appendix B: Debugging
	Errors

	pdb

	koans & pdb

	Appendix C: Classes
	Defining & usage

	snakes

	special methods

	Exercises

	Appendix D: Resources
	Documentation

	Tutorials

	Online Courses

	Applied

	Course References

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Introduction

Learning to program requires much practice. However it is also very rewarding and creative.

The purpose of this course it to give you enough programming vocabulary to
get a taste of what it is.

print(‘Hello’)

	Type Windows + R (the two keys together). A search box pops up.

	Type cmd.exe and press enter.

The program cmd.exe will launche and you should see a prompt:

C:\Users\greg-lo>

The line tells you your current location followed by >.

cmd.exe is a program often called a shell. It is an alternative to the point and
click that we are all used to.

Typing python3 and you enter the python interpreter:

C:\Users\greg-lo> python3
Python 3.4.2 (v3.4.2:8711a0951384, Sep 21 2014, 21:16:45) [MSC v.1600 32 b
it (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Note the prompt has changed to >>>. Python is waiting for your instructions.

Tip

Do not confuse the shell with the python interpreter.

If the prompt is > you are in cmd.exe
If the prompt is >>> you are in the python interpreter.

In the interpreter type the following and press enter:

>>> print('Hello')

Congratulations you have just written and executed a line of python!

Exercise

	Explore and experiment with the interpreter. Try printing other words.

	Can you make Errors appear (it shouldn’t be too difficult)?
How many different ones can you make? Make a list and google each one.

Errors

Troubleshooting errors is a large part of programming.

Typically given a problem to solve a programmer thinks up an idea that may work then
battles through errors until it does work.

Often beginners understandably get frustrated with them. Don’t. Instead build up
resilience by taking time to understand them.
They are always correct and trying to guide you to a solution.

Here are three you will see a lot:

>>> def asdfwe:
 File "<stdin>", line 1
 def asdfwe:
 ^
SyntaxError: invalid syntax

>>> if 5 > 6:
... print('yes')
 File "<stdin>", line 2
 print('yes')
 ^
IndentationError: expected an indented block

>>> def asdfwe:
 File "<stdin>", line 1
 def asdfwe:
 ^
SyntaxError: invalid syntax

By the end of this course, you should be able to instantly map the above errors
to solutions.

Tip

Troubleshooting Errors:

	Reading error messages. Try to intuitively solve them.

	Google errors. There isn’t a single error someone hasn’t already had.

	Ask an expert. If really stuck ask someone for help.

Object oriented programming

We can see our world as containing different types of objects that we can classify according to common attributes and behaviours.

For example in a classroom there many objects that are instances of the type Chair and many other objects that are instances of the type Person.

Objects have:

	Attributes - Chairs have four legs, Persons have two.

	Behaviours - Persons can walk. Persons can move chairs.

Objects can interact with other objects of different types. An object of type Person can
can sit on an object of type Chair.

This is the essence of object oriented thinking. It is about using programmatic
objects to model a domain of interest to a programmer.

This style of programming provides a clear, simple, and consistent model of computation
that maps well to our intuitions about the world.

Python

Python is a simple to learn yet fully featured, high-level, object oriented programming language. It’s popular both in academia, science and other industries. The concepts however will apply to most other object oriented languages.

Two things to bear in mind:

	A language - The textual instructions you type.

	An interpreter - A program (called python) that reads and executes that language.

Together we will learn the correct syntax and grammar of the Python language.

When we ask the interpreter to execute it, it is interpreter that understands how to translate Python scripts into creating and manipulating objects according to your instructions.

This course introduces different types of Python objects: String, Integer, Turtle, lists...

You will discover what attributes and behaviours these objects have and how
to use these to write programs to get stuff done.

Questions

	What other languages have you heard of?

	Explain in your own words but using the concepts interpreter and language
what happened above when you printed text.

Language goals

Our goal is move from this:

turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)

to this:

def square(side):
 for i in range(4):
 turtle.forward(side)
 turtle.left(90)

Questions

Amongst yourselves:

	What does the first code extract do?

	What does the second code extract do?

	Which do you prefer and why?

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Turtles

Turtle objects know how to draw. Here we explore creating and
manipulating them to draw on the screen.

We also look at the two ways the python3 interpreter can execute your python code:

	The interactive interpreter

	Calling the python interpreter on a file that contains code.

Tip

Don’t just read! Type everything and experiment.

Interactive interpreter

We launch the python interpreter through cmd.exe:

	Press the two keys ‘Windows + R’ together

	Enter cmd.exe in the search prompt and enter.

A window will appear with a prompt:

C:\Users\greg-lo>

Type python3 to enter the interactive shell:

C:\Users\greg-lo>python
Python 3.4.2 (v3.4.2:8711a0951384, Sep 21 2014, 21:16:45) [MSC v.1600 32 b
it (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> print('Hi')

Now type:

>>> from turtle import Turtle
>>> tess = Turtle()

[image: _images/turtle-init.png]
>>> tess.forward(100)

[image: _images/turtle-forward.png]
>>> tess.left(30)

[image: _images/turtle-left.png]
Lets call some more methods on the tess our turtle object:

>>> tess.shape('turtle')
>>> tess.color('green')

Lets create ‘bob’ a new turtle object:

>>> bob = Turtle()
>>> bob.shape('circle')
>>> bob.color('red')
>>> bob.backward(100)

Exercise

Experiment drawing shapes in different colours.

Documentation

Visit the turtle online documentation and explore what Turtle objects can do.

https://docs.python.org/3/library/turtle.html

Questions:

	What different colors does a turtle’s color method recognise?

	What shapes does a trutle’s shape method recognise?

Find some new turtle object methods and experiment.

Tip

As you experiment you will want to do know how to do new things. Get into
the habit of exploring the documenation to see what you can do.

Turtles

Lets revise what we have learnt in the light of object oriented terminology.

An object can be created. It has a type, and this type determines its methods
(behaviours).

Creation

>>> from turtle import Turtle
>>> tess = Turtle()

Breakdown:

	We import an object called Turtle from somewhere called turtle.

	Turtle is called, creates a new object of type turtle, and returns it.

	This returned object is assigned to the name tess.

Tip

We call an object by adding parenthesis at the end of its name. Here the
parenthesis are empty but then often aren’t.

Lets confirm the type of tess:

>>> type(tess)
turtle.Turtle

Tip

The function type returns the type of a passed object.

Turtle is a special kind of object in that it produces new objects. We call it
a constructor object.

Methods

Methods are functions attached to objects. We will explore functions later.

>>> tess.forward(100)

Braces () have a special meaning. They indicate calling. You can think of
this as effecting an action.

The effect of calling the method forward on an object of type Turtle is to
draw a line.

What other methods (behaviours) do turtle objects have?

Code in files

Most code is written and executed from a file.

Using SublimeText create a file named my_turtle_file.py with this code:

from turtle import Turtle, exitonclick

tess = Turtle()
tess.shape("turtle")
tess.forward(100)

exitonclick() # Why this? Experiment by commenting it out.

Tip

All word document file names end with .doc,
all files names with python code must end with .py

In cmd.exe call the python command with the filename my_turtle_file.py as parameter:

C:\Users\greg-lo> python3 my_turtle_file.py

Tip

Make sure the file you created exists in the location where you execute this
command. The location is given by the prompt.

Questions/Practicals

	What are the differences between using python3 interactively and using files? When would you use one or the other?

	Challenge yourself to find as many different ways of drawing with a turtle object.

	Take your time to draw something useful and/or crazy.

Shape Exercises

Lets program some shapes. We do this by breaking down into step by step instructions principles of geometry.

Put all code inside a file named shapes.py to be executed using:

python shapes.py

Shapes:

	Draw a square as in the following picture.

Tip

Squares have right angles which are 90 degrees.

[image: _images/turtle-square.png]

	Draw a rectangle.

[image: _images/turtle-rectangle.png]

	Draw an equilateral triangle.

Tip

An equilateral triangle has 3 sides of equal length and each corner has an angle of 60 degrees.

	Draw many squares. Each square should be tilted left of the previous.

[image: _images/turtle-many-squares.png]
Experiment with the angles between the individual squares. The picture shows three 20 degree turns. You could try 30 and 40...

	Draw a simple house.

Tip

Reuse the code you have already written.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Numbers

In this and the following section we examine three new types of objects

	Type
	Used for
	Examples

	Integers
	Numbers
	

	
-5
	16

	Floats
	Decimal
	3.4 -23.001

	Strings
	Text
	‘abc’ ‘bob’

We will look at how to create objects of these types and what operators
(behaviours) they respond to.

Integers & Floats

int objects represent natural numbers.
float objects represent rational numbers, numbers that have a decimal value.
Both types can represent positive or negative numbers.

Creation

Unlike creating turtles there is no formality to creating an int and float
objects.

You just type them as literals:

>>> 3
3
>>> type(-5) # confirm type
int
>>> 3.4
3.4
>>> type(3.0)
<class 'float'>

Questions

	Why do we have two different types to represent numbers?

	Find some uses cases where you’d choose an int and others where
a float is more suitable.

Number Operators

Tip

Unlike turtle object methods, we use operators to manipulate number objects.
This special syntax exists as it maps to our expectations and so
is more intuitive.

Arithemtic operators

Two number objects separated by an arithmetic operator * / - +, actions
behaviour we expect from basic arithmentic.

>>> 5 + 4
9
>>> 5 - 6
-1

The behaviour is to compute and return the result as a new object with the same
type.

Comparison operators

Likewise two number objects separated by comparison operators == !=
>= <= < >, have the behaviour we expect.

>>> 5 == 4
False # What is this?
>>> 5 < 6
True # and this?
>>> 6 <= 6
True

Tip

int objects are used to solve problems that require manipulating numbers
but with no decimal point such as age, and days, IDs.

These are expressions and these evaluate to True or False.

The if conditional

This pattern:

if <boolean expression>:
 <block of code> # Note 4 space indent

mirrors the syntax required to define conditional behaviour.

Typically we use the result of comparison statements to make decisions on what
code to execute.:

if 6 > 5:
 print('Greater Than')

if statements can combine with else:

if 6 > 5:
 print('Greater Than')
else:
 print('Not Greater Than')

Questions

Find some uses cases where you’d use the if conditional.

Number Exercises

	A bar wants to ensure only adults are allowed in. Write a program in a file named
bar.py that prints ‘underaged’ or ‘ok’ depending on the age entered in the code.

	A ride operator needs to ensure clients are taller than 150cm due to security.
Write a prgram in a file named ride.py that will print ‘ok’ or ‘not tall enough’
given a height entered in the code.

	A trader wants to algorithmically buy ‘ACME` corp stock if they rise above
0.005$ but sell if they are below 0.001$. Write a script trader.py that
prints ‘buy’, ‘sell’, ‘hold’ depending on a sale price entered in the script.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Text

Strings

Text is reprsented and manipulated using objects instances of type str.

Creation

>>> "hi"
hi
>>> type('hi') # confirm type
str

When you execute the code “hi” or str(“hi”), the python interpreter:

	Creates an object of type str

	Gives it the value “hi”

	Returns this newly created object

Methods

Many! Consult the online documentation: https://docs.python.org/3.4/library/stdtypes.html#string-methods

Questions

	Find practical uses cases of where you’d like to manipulate text.

	Using the above documentation and the interpreter interactively try to map
those use cases to actual code solutions.

	Try to imagine use cases for each of the methods that exist on
str objects in the docs.

Conversion functions

Often we need to convert between numbers and text. (Why?)

You can use the int and float functions to convert str objects into number objects:

>>> int('3')
3
>>> float('3.4') # constructor can convert from str
3.4
>>> str(3)
'3' # note the ''s that indicate a str object
>>> str(3.4)
'3.4'

User Input

To make programs interactive use a function named input:

>>> name = input("Please enter your name: ")
Please enter your name:

When the interpreter meets input it:

	prints the string message passed as an argument to input,

	Buffers (stores) any characters typed

	On enter returns the characters as a new String.

Here the resultant string is assigned to the name name.

So if the user types in Sophocles then enter, a string object of value
‘Sophocles’ is assinged to name.

if and elif

We can define more complex conditional behaviour by combining if with elif and
else:

>>> x = input("Enter your age: ") # input returns a str
Enter your age: 24
>>> x = int(x) # convert to an int
>>> if x < 18:
... print('You are a child')
... elif x == 18:
... print('You have just turned into an adult')
... else:
... print('You are an adult')

Exercises

	Rewrite the number programs bar.py, ride.py and trader.py to take
input from the user.
Think of an appropriate question to print to screen to solicit
a correct response.

What if the user enters nonsense? There is rarely a program without some form
of validation. This is explored in the next exercise.

	A sign up form on a website for the company ‘Very Big Corp. Of America’ requires
information from its clients. The company wants to do gender based
email marketing. Put this code in big_corp.py

	a Write a program that asks clients their name, address, and gender. Ensure that

	gender is represented as either ‘m’, ‘f’. If it is not ask the user again.
Once all information is inputted print ‘Hi Mr Greg, we have shaving
blades reduced this week’ and for women ‘Hi Ms Natalia, we have cosmetics
currently on sale’

	b The same program now requires people to enter their email address. Add this

	but ensure it is well formed. You will need to define what a well formed email address is.

	A mobile phone company bills clients on a certain plan differently depending
on whether they have dialed a number containing 0845 or not. Write a program
that asks the user which number they’d like to dial and answers whether it
is ‘free’ or ‘paid’. Use mobile.py

	A geneticist needs your help identifying if a dna sequence exists in
a larger strand of dna. A DNA sequence consists of a sequence
of A, T, G, and Cs. Write a program that takes a DNA sequence from the
user and confirms ‘Found’ or ‘Not Found’ depending on whether the input
is contained in the target DNA strand. Use dna.py

DNA strand: ATTGCGCCTTATGCTTAACC

As a challenge extend this program to check that the input is correct.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Names

In this section we will examine names and assignment more closely.

Tip

Names and variables in this context are synonyms. We use ‘name’ because
Python uses this terminology.

Assignment

Assignment is one of the ways we associate names with objects. Names are how
the interpreter knows to locate what programmers are referring to.

Just like we need to name person objects to know how to differentiate between
them, python3, the interpreter, also needs to know what you are referring
to when you give it instructions.

Tip

= the equals symbol means assignment and not equality (unlike in maths).

>>> x = 5

The interpreter executes the above code as:

	Create an int object of value 5.

	Does x exist in the namespace?

True - update the name x to point to the new int object.

False - create a new name x in the namespace and make it point to the new object.

From the point of assignment onwards code can refer to that
object by using the name x. The interpreter will know how to find it by
looking up the value in the namespace.

A name is an expression and it evaluates to its object:

>>> x
5

Names can be reassigned to any type of object:

>>> x = 5 # x refers to an `int` object
>>> x = 'greg' # x refers now to a `str` object

The mysterious from ... import ... that we saw earlier is just about adding
names to the namespace so the interpreter knows what you are referring to:

>>> from turtle import Turtle
>>> tess = Turtle()

Visualising

 Conditionals

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Conditionals

Conditional flow control is how the python interpreter chooses which code to
execute. Think of it as how to express choices.

Boolean expressions are lines of code that resolve to a boolean object. There
are only two values a boolean object can take: True or False.

Conditionals always base their decisions on the result of a boolean expression.
They are always followed by a block of code.

Furthermore conditional loops enable us to harness logic relating to repetition.

Code Blocks

A block of code is code that will execute together. A block is defined by the
use of indentation.

All types of conditionals use code blocks which are executed depending on the
outcome of the conditional expression that guards their execution.

a = 4
if a == 4:
 print('This code block will execute')
 result = 5 + a
else:
 print('This code block will not execute')
 result = a + 6

Tip

In other languages code blocks are defined by the use of braces `{}`s

Equality

Testing the equality of two objects returns True or False depending on how
equality is defined on those two objects.

Equality on stings is defined as follows:

>>> '5' == '5'
True
>>> '5' == '6'
False

Generally the objects have to first be of the same type and then have the same
value to be equal:

>>> 5 == '5'
False

The while loop

The while <condition>: construct is a way of instructing the interpreter to repeat
indefinitely. The condition defines when the loop will terminate.

syntax

while <condition>: # condition must evaluate to a boolean
 <code block> # the indent defines the loop's code block

example

>>> import random
>>> warm = 20
>>> temperature = random.randrange(5, 30)
>>> while temperature <= warm:
... print('cold')
... temperature = random.randrange(5, 30)
cold
cold
cold

visualising execution

 Functions

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Functions

You can think of functions as actions, verbs, or commands
and you can think of parameters as adverbs: ‘run, quickly’

Functions are special objects that contain code.

When you call them, using special syntax (), you execute the
code they contain.

>>> turtle.forward # functions have names
<function turtle.forward>
>>> turtle.forward(10) # actioned by use of '()'s

All turtle instructions are examples of calling functions attached
to the turtle object.

print is another function:

>>> print('hello')

print simply prints its parameter to the console.

Tip

Functions and methods are very similar.
Methods exist on objects however functions stand alone.

Function objects

A function like everything in Python is an object. Function objects are different in that they contain blocks of code.

Functions help in letting programmers organise and reuse code. They help create new abstractions.

Function objects have names. The name is assigned at the same time you define a function.

defining

Creating function objects requires special syntax:

>>> def my_function():
... print('hello') # Note 4 space indentation
...
>>> type(my_function)
function

The def keyword is followed by the function object name, followed by () and then a colon.

example:

def going_nowhere():
 turtle.forward(50)
 turlle.backward(50)

Note:

	The body of a function is the following block of code.

	A block is defined by a colon, and one or more indented lines.

	The indents are 4 spaces. The block ends on the first non indented line. (Take care to use spaces and not tabs for indenting)

Usage

We ‘call’ functions by adding () at the end of their names.
This is syntax unique to functions. It means action the function objects’ code block.

IndentationError

Indentation is the number of spaces from the left hand side. In python it defines blocks of code.

If you get this kind of error:

>>> def awef():
... print('hi')
 File "<stdin>", line 2
 print('hi')
 ^
IndentationError: expected an indented block

It simply means the indentation wrong. Here the programmer has
forgotten to add 4 spaces on the new line after the colon.

Arguments

We saw names generalise code and eases code reuse. This is also true of functions that take arguments.

Compare this function without arguments:

def draw_right_angle():
 turtle.forward(10)
 turtle.left(90)
 turtle.forward(10)

to this one with arguments:

def draw_right_angle(length):
 turtle.forward(length)
 turtle.left(90)
 turtle.forward(length)

The second function is more flexible. It can be used to move by any length.

The argument acts as a variable only defined inside the function’s code block.

Functions can have many arguments:

def move_diagonally(angle, length):
 turtle.left(angle)
 turtle.forward(length)

Function Scope

We have seen two ways to add to a given namespace:

	An assignment statement adds a name that references an object.

	A function definition associates a name with an object of type function.

Functions however create a namespace for the code it contains.

We will use pythontutor to exercise visualising program execution.

 Data Structures

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Data Structures

Data structures contain other objects. We will look at two: lists, dictionaries.

Typical methods defined on data structures are ones that allow access and
update items within it.

As always first we explore how to create objects using literals and
constructors, we then examine some methods typical of each object.

Second, we often want to do something for each item in a data structure. This
involves ‘iterating’ over it. We do this using the for loop.

Lists

A list object contains ordered items.

Creation

>>> ['John', 'Eric', 'Michael', 'Terry'] # literal
>>> list('abc') # `list` transform a string
['a', 'b', 'c']
>>> type([1, 2, 3])
<class 'list'>

Extraction & Update

>>> abc = ['a', 'b', 'c']
>>> abc[0] # extract item
'a'
>>> abc[2] = 'd' # update item
>>> abc
['a', 'b', 'd']

Tip

Lists are 0 indexed. The first item is at index 0, the second at 1...

If you ask for an item that is outside of the list’s length you will get an IndexError.

range

The range function combined with the list constructor is a fast way to create a list
with a specified number of increasing integers.

>>> list(range(3)) # think: give me numbers up to 3
[0, 1, 2]

It provides a convenient shortcut to do things a certain number of times.

>>> for i in range(2):
... print('hi')
'hi'
'hi'

Dictionaries

Dictionaries contain key value mappings.

They can be used to collect information (data) about something.
Here we use a dictinary to represent a Person.

creation

>>> {'name': 'Brian', 'age': 23, 'sex': 'M'} # literal
>>> dict([('name', 'Brian'), ('age', 23), ('sex', 'M')]) # constructor

extraction & update

Special syntax: <dict-name>[<key>] for extracting and updating an attribute.

>>> person = {'name': 'Brian', 'age': 23, 'sex': 'M'}
>>> person['name'] # extract value
'Brian'
>>> person['name'] = 'Naomi' # update value
>>> person['name']
'Name'

If you request a non-existent key you get a KeyError.

Nesting

Data structures can include any type of object including other data structures.

Here is a list of dictionaries:

>>> persons = [
 {'name': 'Naomi', 'age': 32, 'sex': 'F', 'status': 'Single'},
 {'name': 'Jane', 'age': 29, 'sex': 'F', 'status': 'Married'},
 {'name': 'Brian', 'age': 23, 'sex': 'M', 'status': 'Single'}
]

Nested data structures are extremely common.

Think how this could be useful for example to store information about all
students in a class.

The for loop

Use for to iterate over each item in a given list.

Here by iterate through a list of str objects we change the colour of our
turtle alex.

from turtle import Turtle, exitonclick

alex = Turtle()

for a_colour in ["yellow", "red", "purple", "blue"]:
 alex.color(a_colour)
 alex.forward(50)
 alex.left(90)

exitonclick()

Refactoring square

We refactor square combining range with a for loop.

def square(side):
 for i in range(4):
 turtle.forward(side)
 turtle.left(90)

Drawing a square is reduced to repeating the same action four times.

Thanks to the for loop our definition of a square in code:

	is shorter and more readable.

	communicates an insight into the geometry of a square.

Exercises

Refactor shapes.py

Refactor all the shapes in shapes.py and make good use of loops where you
can.

Hexagon

Write code that draws this:

[image: _images/turtle-hexagon.png]

Honeycomb

Write code that draws this:

[image: _images/turtle-honeycomb.png]

Any Shape

Write code that can draw any shape like this:

[image: _images/turtle-all-shapes.png]

Tip

The sum of the external angles of any shape is always 360 degrees.

Practical: Paper Sissors Rock

Steps:

	user inputs either paper, sissors or rock.

	computer randomly chooses one too.

	print outcome according to the rules of the game:
	If user chose ‘paper’ and computer chose ‘rock’, then print ‘rock wins’

	if user chose ‘sissors’ and computer chose ‘paper’ then print ‘sissors
wins’

	... and so on ...

	Exit

You will need to use some randomness:

>>> import random
>>> random.choice(['a', 'b', 'c'])

Looping turtles

Using the following as template draw this:

[image: _images/turtle-queue.png]
Put the following in a file called turtle_queue.py and finish off the
program.

import turtle

number_of_turtles = 4

turtles = []
for _ in range(number_of_turtles):
 turtles.append(turtle.Turtle())

position point of origin at bottom left of window
turtle.setworldcoordinates(0, 0, 600, 600)

for i, turtle_ in enumerate(turtles):
 turtle_.up()

Evenly space out the turtles
for i, turtle_ in enumerate(turtles):
 ypos = 600 / number_of_turtles * i
 turtle_.setpos(0, ypos)

for i, turtle_ in enumerate(turtles):
 turtle_.down()

###################################
Your turn! Enter your code here
###################################

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Conclusions

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Conclusions

Programming

The constructs we have learnt (loops, conditions, data structures) mean that we
are far more expressive as programmers.

Combined with abstractions we can compose and recompose new programs.

Building on our previously defined concept of a house we now use repetition
to define a row of houses.

def row_of_houses(number, size):
 for i in range(number):
 house(size)
 turtle.forward(size)

This is how complex and useful programs are built.

Abstractions

We have gone from understanding this:

turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)

to programming like this:

def square(side):
 for i in range(4):
 turtle.forward(side)
 turtle.left(90)

Why is the second version better than the first?

Computers are complex. Even the smallest operation hides layers of incredible
complexity. Programming is not only about getting a computer to do things. It is about
writing code that is useful to humans.

Good programming is harnessing complexity by writing code that rhymes with our
intuitions. Good code is code that we can use with a minimal amout of context
and already be productive.

By calling:

>>> square(100)

The above code called square can be understood even by a non programmer. Intuition
helps because the code is defined at the appropriate level of abstraction over the complex details for understanding to take place.

The two major advantages are:

	detail and complexity is hidden.

	the definition of the function object called square is shorter clearer
and truer to its mathematical (conceptual) definition.

This course illustrates that creative programming is about constructing useful
abstractions. It is also about exercising your intuition to make you more
productive.

Design

We have gone from step by step instructions to defining blocks of code in such
a way as to define higher level concepts.

Defining reusable components and the ability to repeat them is immensely powerful.

Think of everything you can make from Lego bricks. Minecraft is a world build
with cubes. In the real world think of all the components and repetition you
typically find in a skyscraper.

This is where programming starts to become creative. You can define the
universe of things that is of interest to you.

Exercises

A Text editor

Think about the objects that you’d have to use to reprsent editing text.

Your Project

Programmers model other domains. Think of an area where you are expert and
how you might code it.

What objects, functions and variables would need to be defined?

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Koans (Optional)

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Koans (Optional)

Koans are puzzles or exercises that are a great way to reinforce your learnings
of a programming language’s constructs.

Find instructions on how to download and run them below.

Making assertions

The koans use the keyword assert a lot. When you assert something you are stating
that it must be true.

In python true and false are represented by the keywords True and False.

assert passes silently when it is followed by True but throws an Error when followed by False:

>>> assert True
>>> assert False
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError
>>>

In the Koans you have to find answers that evaluate to True for the assert to
pass.

Visit the appendix on windows for getting started.

Using your intuition try to complete the about_asserts koans.

Making Assertions:

C:\Users\greg-lo> python3 contemplate_koans.py about_asserts

The Koans

Tip

When confused by code, break it up and use the interactive interpreter
to experiment. Formulate assumptions and test them.

Integers:

C:\Users\greg-lo> python3 contemplate_koans.py about_integers

Strings:

C:\Users\greg-lo> python3 contemplate_koans.py about_strings
C:\Users\greg-lo> python3 contemplate_koans.py about_string_manipulation

Conditionals:

C:\Users\greg-lo> python3 contemplate_koans.py about_if_statements

Functions:

C:\Users\greg-lo> python3 contemplate_koans.py about_functions

Data Structures:

C:\Users\greg-lo> python3 contemplate_koans.py about_lists
C:\Users\greg-lo> python3 contemplate_koans.py about_dictionaries

Loops:

C:\Users\greg-lo> python3 contemplate_koans.py about_loops

Instructions

Setup

We need to:

	Download the koans zip file [https://github.com/arachnegl/python-koans/archive/master.zip].

	Unzip it

	Move the unzipped folder from Downloads
to your home directory (for me its C:Usersgreg-lo)

Now open cmd.exe:

C:\Users\greg-lo>

Change directory (cd) into the python-koans-master directory:

C:\Users\greg-lo> cd python-koans-master
C:\Users\greg-lo\python-koans-master>

Note the updated location in the prompt.

You are setup!

Running

You run the koans by calling the python3 interpreter on the
contemplate_koans.py file followed by a name such as about_asserts:

Now we are ready to execute the contemplate_koans.py program:

C:\Users\greg-lo> python contemplate_koans.py about_asserts

The above instruction is understood as calling the python program and passing in two parameters: a file name ‘contenplate_koans.py’ and some text ‘about_asserts’.

The output should be similar to this:

Thinking AboutAsserts
 test_assert_truth has damaged your karma.

You have not yet reached enlightenment ...
 AssertionError: 0 is not true

Please meditate on the following code:
 File "/Users/greg/TEACHING/python_koans/koans/about_asserts.py", line 13, in test_assert_truth
 assert False # replace with True

You have completed 0 koans and 0 lessons.
You are now 77 koans and 9 lessons away from reaching enlightenment.

Note the section that asks you to mediate on a file with a line number.

Answering

Open this file in SublimeText. Find SublimeText in the Start search prompt.

Open the file as specified by the output of contemplate_koans. In the above
case:

	open C:Usersgreg-lopython-koans-masterkoansabout_asserts.py

	Go to line 13 and replace False with True.

	Save the file.

	Rerun the Koans

You should find that one line has gone Green and you now have a new challenge.

Tip

Arrange the windows on your screen so that you have your text editor on one
side and two `cmd.exe`s on the right one above the other.

Have the command prompt open in one for running the koans.

Have the python interpreter in the other for experimenting with code.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Appendix A: Windows

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Appendix A: Windows

You interact with python using the cmd.exe program.

You can find it by searching in the start prompt.

A shortcut:

	Press Windows + R (the two keys together)

	A search prompt pops up.

	Type cmd.exe and press enter.

Command line 101

Typically you interact with your operating system using a mouse with certain
actions: point, click, drag. Using these you can launch programs and move files.

The cmd.exe program offers the same interaction but using typed commands:

When cmd.exe launches you get a prompt:

C:\Users\greg-lo>

The prompt gives you your currnent location followed by a >.
Here I am in the directory greg-lo which itself is in the directory Users.
C refers the hardrive I am on.

Now you enter the dir command:

C:\Users\greg-lo> dir

This will list all the files and folders in your current directory.

Here are all the commands you need for this course:

	cd - change directory

	dir - list the directory’s contents

	copy - copy a file or a directory

	move - move a file or a directory

	mkdir - make a directory

	del - delete a file or directory

	unzip - unzip a zipped (compressed) file

Tip

There is nothing here that you aren’t familiar doing with the
mouse. If necessary use your mouse to orientate yourself.

The Python Interpreter

When you install python in windows it gives you the option to add the
executable (python.exe) to your system path.

Unfortunately we need to specify the full path each time: Python34python.exe.

C:\Users\greg-lo>python
Python 3.4.2 (v3.4.2:8711a0951384, Sep 21 2014, 21:16:45) [MSC v.1600 32 b
it (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Tip

At first it is normal to confuse the command line and the python interpreter.
Python instructions don’t run in the command shell and shell commands don’t
work in the interpreter.

The interpreter has >>> as its prompt

The command shell has the file path eg C:Usersgreg-lo>

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Appendix B: Debugging

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Appendix B: Debugging

Exceptions occur when the interpreter can’t carry out a given instruction. The
type of error (Exceptions are objects) communicates what is wrong.

We stress that most of programming is error driven. Don’t think of errors negatively rather they are problem solving opportunities.

Debugging is working out what went wrong and fixing it.

Learn to be guided by Errors, and use debugging tools to master programming.

Here we explore some common errors and then we introduce pdb the python
debugger.

Errors

Errors always tell you what when wrong but not always why.

Read errors, first using intuition then by debugging and research.

Tip

You need to learn how to find information.
Always read Errors and use your intuition, then Google.
If that hsn’t helped only then ask an expert.

With time many errors map to solutions instantly.

AttributeError

An AttributeError means the interpreter can’t find the name you have asked
for on the object.

>>> import turtle
>>> turtle.shp('waef')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute 'shp'

Here the programmer has misspelt shape.

SyntaxError

Learning a language involves making many syntax (grammatical) errors.

A function defined badly:

>>> def print_hi:
 File "<stdin>", line 1
 def print_hi
 ^
SyntaxError: invalid syntax

Parentheses () are required after the name and the ending colon :.

>>> def print_hi():
 print('hi')

No error, print_hi is properly defined.

pdb

pdb is the python debugger. You can freeze execution at a particular point in time, step through it, examining objects as you go.

To execute code with pdb:

python3 -m pdb my.py

You can also pause the execution at any time by placing this line into your
code:

import pdb; pdb.set_trace()

When you run your code normally (python my.py) the interpreter will break at
the that line of code.

Type h to get a list of all the commands. The important ones for now are:

Move along the execution timeline:

	l print lines of code surrounding cursor

	n execute next line

	s step into a line. Typically used for entering functions.

	c continue till the end of the program (or next break point).

Inspect the current location:

	w print frames on the stack at current position

	u go up a frame in stack

	d go down a frame in the stack

To exit:
* q exit the debugger. Will terminate program execution.

Tip

On any error or exeception enter a import pdb; pdb.set_trace() on the line
preceeding your program terminating. Run the program, then inspect what went wrong.

example

We will use pythontutor hand in hand with pdb to exercise visualising program
execution.

Put this code into a file named my.py:

x = 1
y = 2
success = 'works'
failure = 'broken'

def inc(p):
 incremented = p + 1
 return incremented

def print_result(result):
 if result:
 print(success)
 else:
 print(failure)

inc_x = inc(x)
print_result(inc_x == y)

Execute with:

python3 -m pdb my.py

pdb starts program and pauses at first line:

> /Users/greg/my.py(1)<module>()
-> x = 5
(Pdb)

Executing l results in:

(Pdb) l
 1 -> x = 5
 2 y = 6
 3
 4 def f():
 5 z = 4
 6 total = sum(x, y, z)
 7 return total
 8
 9 print('hi')
 10 print(f())
[EOF]

Step through each line of code keeping.

Ensure you explore the two frames when you enter the f functions’ frame.

Tip

We have used a python code visualiser in a similar way.

koans & pdb

pdb is a great tool to understand code. Here we will apply it to our koans.

Enter:

import pdb; pdb.set_trace()

In a koan method that caused you difficulty.

Step through the execution of the code.
When you are done type c to continue normal execution.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Appendix C: Classes

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Appendix C: Classes

We are now going to bring what we have learnt about object oriented programming
together as we define our own object type using classes.

Classes are how programmers define objects that make new objects. Think of them
as object templates or factories.

Tip

The Koans are structured as classes with each koan as a method.

Defining & usage

Much like we defined functions lets define a class.

A python.py file contains:

class Python():
 """ A class that represents a snake """

 def __init__(self, name, sex, age, length):
 self.name = name
 self.sex = sex
 self.age = age
 self.length = length

 def move(self):
 print("{} moves".format(self.name))

 def eat(self):
 """ a snake gets longer when it eats """
 self.lenth = self.legnth + 1

 def starve(self):
 """ a snake shorter when it starves """
 # is there a bug here?
 self.lenth = self.legnth - 1

class object

Lets introspect the new type of object:

>>> from python import Python
>>> type(Python)
<class 'type'>
>>> dir(Python)
[... many methods ...]

instances

A class is like an object instance factory. Here our class makes snakes.

Implicitly it runs the __init__ function as defined on the class.

Creating:

>>> john = Python('John', 'M', 15, 4)
>>> jane = Python('Jane', 'F', 4, 6)

Introspecting:

>>> type(john)
<class 'python.Python'>
>>> dir(john)
[... many methods ...]

Note we get move, starve, and eat which we defined, but we also get many methods others.

Tip

The other methods are those found when executing dir(object)

methods

>>> Python.move
<function Python.move at 0x10f9b6840>
>>> john.move
<bound method Python.move of <python.Python object at 0x10fb04898>>

A function and a method are very similar. A function can stand alone, a method
however is ‘bound’ to an object. When defined methods always take self as their
first argument. It is thereby implicit when called.

snakes

The __str__ special method is called on an object when we pass it to the print function.

We decide that the semantics of printing a python is to show a visual
representation of a snake using characters.

Added to definition in python.py:

class Python():

 def __init__(self, name, sex, age, length):
 self.name = name
[...]

 def __str__(self):
 body = '=' * self.length
 return "{}>".format(body)

results:

>>> from python import Python
>>> john = Python('John', 5)
>>> print(john)
~-=====%>

special methods

Exercises

attack

Decide on the semantics of a python attacking another object.

Implement your decision by defining a new method.

__add__

Lets define another special method to exploit the nice syntax python gives us.

Decide on the semantics of ‘adding’ pythons together.

Implemnent by defining your __add__ method on the Python class.

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

 Appendix D: Resources

 Navigation

 	
 previous

 	Introduction to Programming with Python

Appendix D: Resources

There are many resources freely available on the web for further learning.

One of the strengths of Python relative to other languages is the diversity of
of applications it has.

Do find one area of interest and make it your own.

Documentation

https://docs.python.org/3/

The important ones are:

	Tutorial

	Library Reference - Practical

	Language Reference - Academic, authoritative.

Tutorials

	start with these:
	http://interactivepython.org/runestone/static/thinkcspy/toc.html

	http://opentechschool.github.io/python-beginners/en/index.html

	http://learnpythonthehardway.org/ Not hard, hands on

	Popular:
	http://www.codecademy.com/en/tracks/python

	http://inventwithpython.com/

	http://www.diveintopython3.net/

Online Courses

Python today is widely taught in University. Here are some execelent resources.

	Udacity - CS101

	MIT Intro to Computer Science and Programming (MITOpenCourseware)

	Introduction to Interative Programming in Python (Coursera)

	Learn to Program: The Fundamentals (University of Toronto, Coursera)

Applied

The best way to consolidate learning programming is to find a domain that is of
interest and learn more about programming it.

Here are some resources that will inspire.

Natural Language Processing

Natural Language processing refers to tools used to parse and add semantics
to human language. Talking with computers.

	http://www.nltk.org/

	http://www.nltk.org/book/

	Python 3 Text Processing with NLTK 3 Cookbook

Web development

	https://docs.djangoproject.com/en/ Django Tutorial

	http://www.obeythetestinggoat.com/ To become a pro!

Games

	http://www.pygame.org/wiki/tutorials

3D Graphics

	Blender
	http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts

	http://www.blender.org/api/blender_python_api_2_72_1/

	Maya
	http://zurbrigg.com/maya-python

Electronics

Raspberry Pi is currently the center of focus for fun with home electronics.

	Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi

	Make: More Electronics: Journey Deep Into the World of Logic Chips, Amplifiers, Sensors, and Randomicity

	Raspberry Pi Home Automation with Arduino

	Raspberry Pi for Secret Agents

	Raspberry Pi Cookbook for Python Programmers

	OReilly RPi

	Getting Started with Sensors: Measure the World with Electronics, Arduino, and Raspberry Pi

Geospatial (GIS)

	http://geospatialpython.com/

	http://qgis.org/en/site/

	http://docs.qgis.org/2.0/en/docs/pyqgis_developer_cookbook/

Biology

	http://biopython.org/DIST/docs/tutorial/Tutorial.html

Maths

	http://www.sagemath.org/doc/thematic_tutorials/

	http://www.sagemath.org/doc/tutorial/

Forensics

	Violent Python (book)

	Grey Hat Python (book)

Mobile

	http://kivy.org/docs/tutorials/pong.html

Data Science

	Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
(book)

	http://pandas.pydata.org/pandas-docs/dev/tutorials.html

Machine Learning

	Scikit-Learn: Machine Learning in Python

	http://scikit-learn.org/stable/tutorial/index.html

	Practical Data Science Cookbook (book)

	Building Probabilistic Models with Python (Book)

Course References

Some materials that inspred this course.

	Open Tech Schoool
	http://opentechschool.github.io/python-beginners/en/index.html

	How to Design Programs
	http://htdp.org/

	Structure and Interpretation of Computer Programs
	https://mitpress.mit.edu/sicp/full-text/book/book.html

 Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up-pressed.png

learning_tips.html

 Navigation

 		Introduction to Programming with Python »

Learning Tips

Intuitions

Your intuitions are your best guide. Always try to understand, never be
bothered by not getting it. Keep your questions as pending. You don’t need to
understand everything.

Practice & experiment

Ideally try to program one hour a day.

Always experiment and try things out. You can only learn to program by doing.

Emotions

Learning something like programming can be frustrating.

Computers and humans are different; we excel at different things.

Computers are utterly stupid, they are unforigivingly precise and logical.
Humans can be logical but they also have intelligence, imagination, and creativity.

All programmers, beginners and advanced, make plenty of mistakes and often get stuck.

Manage your expectations. Know that everyone has been through the same.
Computers are a tool waiting for you to learn to master them.

Everyone can learn to program

Studies have shown the only difference between people who are good at
programming and those who aren’t is almost completely related to amount of time spent programming.

Go very slow

As humans we think at a higher intuitive level. We think square, or move
forward.

Computers need everything broken down into steps. Each step is a command.

Programming as an activity is about breaking down our concepts into smaller defined steps.
In effect we define our concepts in commands.

Find a project

Although programming has plenty of intrinsic value its only as popular as it is
because of the things you can do with it.

Unfortunately we won’t look into detail at the many application domains as we
don’t have time. Use the resources section to choose an area that is of
interest and focus on it.

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

interpreter_debugging.html

 Navigation

 		Introduction to Programming with Python »

Interpreter & Debugging

The interpreter does a lot of work in the background that we don’t see. Some of
it we don’t need to know about. But other parts is essential to programming.

Programs execute over time. There is an execution timeline during which objects and names have a life cycle and a context.

Debugging exposes the work that the interpreter does that is relevant to the
programmer. It enables interacting with the timeline of execution and the execution environment.

Note a lot of this is out of the scope of this course and we will cut corners. The aim is to get an intuition for what is going on and not to be exact.

Runtime

The runtime can be seen as a timeline of execution from start to finish.

The interpreter starts at the top of a python file. It then proceeds line by
line down. For each line it executes the code that is in the gloabl or higher level (0 indent).

Note that functions are treated differently. The function objects are created
and bound to their names, but the code block isn’t executed until called.

Note this is why Errors in functions only appear at runtime.

Environment

During runtime the interpreter creates, updates, and deletes frame & namespace objects as part of maintaining the environment. These objects combine to determine what is in scope at a particular point of execution.

Some definitions:
* A namespace is a mapping from names to objects.
* A frame is an execution environment.
* Scope defines what names the interpreter can find given which frame its in and
the namespaces associated.

You are exposed to frame objects when you see error messages. You have
interacted with namesspace objects since the start of this course without
knowing it. Every assignment has added a name to a Namespace object and
associated it with the object instance it references.

When the interpreter encounters a name, it searches in the various namespaces
available to it as specified in the frame. If it is found, the name resolves to
the object it references. If not it springs a NameError.

Namespaces & functions

The local namespace for a function is created when the function is called, and deleted when the function returns or raises an exception that is not handled within the function.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here means that an unqualified reference to a name attempts to find the name in the namespace.

References

There is a lot of complexity here. Only approach if feeling brave and happy for
it to make sense over time.

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://docs.python.org/3.3/reference/executionmodel.html

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

conditionals_solutions.html

 Navigation

 		Introduction to Programming with Python »

Solutions to Practicals

loan.py

while balance > 0:
 compound_interest = 0.1 * balance
 print('balance: ' + str(balance))
 balance = balance + compound_interest - 20

balance: 100.0
balance: 90.0
balance: 79.0
balance: 66.9
balance: 53.59
balance: 38.949000000000005
balance: 22.843900000000005
balance: 5.128290000000007

turtle_joypad.py

import turtle

tess = turtle.Turtle()

while True:

 move = input('Type a w d s for left right up down\nType q to exit\n')

 if move == 'a':
 tess.setheading(180) # west
 tess.forward(10)
 elif move == 'w':
 tess.setheading(90) # north
 tess.forward(10)
 elif move == 'd':
 tess.setheading(0) # west
 tess.forward(10)
 elif move == 's':
 tess.setheading(270) # south
 tess.forward(10)
 elif move == 'q':
 break

bmi_django.py

from django.shortcuts import render
from django.http import HttpResponse

bmi_html = """
<html>
<head></head>
<body>
 <h1>BMI calculator</h1>
 <p>Your bmi is {}</p>
 <p>see where you are on this chart:</p>

</body>
</html>
"""

def bmi(request):

 mass = request.GET['mass']
 height = request.GET['height']

 bmi = float(mass) / float(height)**2

 response = bmi_html.format(bmi)

 return HttpResponse(response)

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

functions_solutions.html

 Navigation

 		Introduction to Programming with Python »

Shapes file

Your shapes.py file should now look like this:

import turtle

def square(side):
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)

def rectangle(side):
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)
 turtle.forward(side)
 turtle.left(90)

def equilateral_triangle(side):
 turtle.forward(side)
 turtle.left(180-60)
 turtle.forward(side)
 turtle.left(180-60)
 turtle.forward(side)
 turtle.left(180-60)

def house(size):
 square(size)
 turtle.left(90)
 turtle.forward(100)
 turtle.right(90)
 equilateral_triangle(100)
 turtle.right(90) # return to point of departure
 turtle.forward(100)
 turtle.left(90)

Conversion Programs

def to_celsius(fahrenheit):
 celsius = (fahrenheit - 32) * 5 / 9
 return int(celsius)

fahrenheit = input('Please enter an amount in fahrenheit: ')
fahrenheit = int(fahrenheit)
celsius = to_celsius(fahrenheit)
celsius = str(celsius)
print(str(fahrenheit) + 'fahrenheit is ' + celsius + ' in celsius')

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

turtles_solutions.html

 Navigation

 		Introduction to Programming with Python »

Shape Solutions

Instructions

Save these in a file called shapes.py

Square

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

rectangle

turtle.forward(100)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

Many Squares

turtle.left(20)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

turtle.left(30)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

turtle.left(40)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

Equilateral Triangle

turtle.forward(100)
turtle.left(180-60)
turtle.forward(100)
turtle.left(180-60)
turtle.forward(100)
turtle.left(180-60)

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		Introduction to Programming with Python »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

names_solutions.html

 Navigation

 		Introduction to Programming with Python »

Names Solutions

age_in_2050.py

age = input('Enter your age: ')
age = int(age)
age_in_2050 = (2050 - 2014) + age
print('Your age in 2050 will be ' + str(age_in_2050))

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

classes_solutions.html

 Navigation

 		Introduction to Programming with Python »

Python Class

import random

class Python():

 def __init__(self, name, sex, age, length):
 self.name = name
 self.sex = sex
 self.age = age
 self.length = length

 def move(self):
 print("{} slithers".format(self.name))

 def eat(self):
 """ a snake gets longer when it eats """
 self.length = self.length + 1

 def starve(self):
 """ a snake shorter when it starves """
 # is there a bug here?
 self.length = self.length - 1

 def __lt__(self, other):
 return self.length < other.length

 def __gt__(self, other):
 return self.length > other.length

 def __add__(self, other):
 if self.sex == other.sex:
 return None
 new_name = self.name + other.name
 sex = random.choice(['M', 'F'])
 return Python(new_name, sex, 0, 1)

 def __str__(self):
 body = '=' * self.length
 return "{}> {}".format(body, self.name)

Example run

>>> jane = Python('Jane', 'F', 4, 6)
>>> john = Python('John', 'M', 15, 4)
>>> print(john)
>>> print(jane)
>>> jane < john
>>> jane > john
>>> jane + john
>>> baby = jane + john
>>> print(baby)

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

numbers_solutions.html

 Navigation

 		Introduction to Programming with Python »

Number Solutions

bar.py

age = 17
if age < 18:
 print('Underaged'):
else:
 print('ok')

ride.py

heigth = 200
if height < 150:
 print('Not tall enough'):
else:
 print('ok')

trader.py

acme = 0.003
if acme < 0.002:
 print('Sell'):
elif acme > 0.005:
 print('Buy')
else:
 print('Hold')

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

text_solutions.html

 Navigation

 		Introduction to Programming with Python »

Text Solutions

bar.py

age = input("Enter your age ")
age = int(age)
if age < 18:
 print('Underaged'):
else:
 print('ok')

ride.py

height = input("Enter your height ")
height = int(height)
heigth = 200
if height < 150:
 print('Not tall enough'):
else:
 print('ok')

trader.py

acme = input("Enter ACME stock price ")
acme = float(acme)
if acme < 0.002:
 print('Sell'):
elif acme > 0.005:
 print('Buy')
else:
 print('Hold')

big_corp.py

first_name = input("Enter your first name: ")
last_name = input("Enter your last name: ")

gender = input("Enter your gender m for male, f for female: ")
if gender != 'm' or gender != 'f':
 print('Gender must be m or f')

if gender == 'm':
 print('Hi Mr ' + last_name '. The sale this week is for boxer shorts')
if gender == 'f':
 print('Hi Ms ' + last_name '. Buy some great lipstick when next in
 store')

mobile.py

phone = input("Enter phone number: ")

if '0845' in phone:
 print('Charging')
else:
 print('Free')

dna.py

dna = ATTGCGCCTTATGCTTAACC
new = input("Enter DNA strand: ")

if new in dna:
 print('Found')
else:
 print('Not Found')

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

_images/turtle-left.png

_images/turtle-all-shapes.png

polymorphism.html

 Navigation

 		Introduction to Programming with Python »

Polymorphism

Polymorphism means that different types respond to the same function.

Polymorphism is very useful as it makes programming more intuitive and
therefore easier.

Polymorphism is a fancy word that just means the same function is
defined on objects of different types.

Python provides protocols which is polymorphism under the hood. These implement consistent behaviour
for built in objects of different type.

Protocols

When we introspect an object we have a lot of attributes that take this format:
__names__. This section will make many of those clear.

Everything is an object and all actions ultimately mean calling functions defined on objects.

Protocols are polymorphic functions that are embbedded into python. Most
importantly the interpreter is aware of them.

Protocols enable:

		consistency - programmers can rely on intuition

		special syntax - interpreter translates nice syntax to functions on objects.

We will look at two protocols: __contains__ and __iter__

__add__

x + y resolves to x.__add__(y)

>>> 1 + 2
3
>>> one = 1
>>> one.__add__(2)
3
>>> '1' + '2'
'12'
>>> '1'.__add__('2')
'12'

Any object that implements the __add__ function will work
with the <object> + x syntax.

__contains__

__contains__ is the built in protocol for membership.

x in y resolves to y.__contains__(x)

When the interpreter encounters ‘b’ in [‘a’, ‘b’] it knows to look for the __contains__
function on the object to the right of in and pass it the object to the left
of in as parameter.

A list object has that function defined and the interpreter then executes the corresponding code block.

All data structures have the concept of membership defined:

>>> 'b' in ['a', 'b']
True
>>> 'b' in ('a', 'b')
True
>>> 'b' in {'a': 1, 'b': 2}
True
>>> 'b' in {'a', 'b'}
True

Demonstrating __contains__:

>>> ['a', 'b'].__contains__('b')
True
>>> ('a', 'b').__contains__('b')
True
>>> {'a': 1, 'b': 2}.__contains__('b')
True
>>> {'a', 'b'}.__contains__('b')
True

Any object that implements the __contains__ function will work
with the x in <object> syntax.

__iter__

__iter__ is how iteration is implemented in Python. This protocol is a bit more involved
than the previous protocols.

Taking this code:

>>> number = [1, 2]
>>> for i in [1, 2]:
... print(i)
...
1
2

Roughly here is the sequence of events:
* interpreter calls __iter__ on the list object,
* an object of type iterator is returned.
* interpreter then calls __next__ repeatedly on the iterator
* interpreter actions the code in the for loop
* interpreter interrupts the loop if a StopIteration Exception occurs.

To illustrate:

>>> itr_obj = [1, 2].__iter__()
>>> type(itr_obj)
<class 'list_iterator'>
>>> itr_obj.__next__()
1
>>> itr_obj.__next__()
2
>>> itr_obj.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

Any object that implements the __iter__ function will work
with the for x in <object>: ... syntax.

Exercise

Boolean Operators

Using introspection functions, which protocol functions do the following syntax
resolve to:

		3 > 2

		3 < 2

		3 <= 2

		3 >= 2

String representations

What function gets called when we get results in the interpreter?
Is it the same that gets called when we type print(x)?

len() implementation

len() works on many object types:

>>> len('hi')
2
>>> len([1, 2])
2

Which protocol function is called by the function len on the object it is passed?

 © Copyright 2015, Greg Loyse.
 Created using Sphinx 1.2.2.

data_structures_solutions.html

 Navigation

 		Introduction to Programming with Python »

Shapes file

Your shapes.py file should now look like this:

from turtle import Turtle

tess = Turtle()

def square(side):
 for _ in range(4):
 tess.forward(side)
 tess.left(90)

def rectangle(width, length):
 for _ in range(2):
 tess.forward(width)
 tess.left(90)
 tess.forward(length)
 tess.left(90)

def equilateral_triangle(side):
 for _ in range(3):
 tess.forward(side)
 tess.left(180-60)

def hexagon():
 for _ in range(6):
 tess.forward(100)
 tess.left(60)

def honeycomb():
 for _ in range (6):
 hexagon()
 tess.forward(100)
 tess.right(60)

def house(size):
 square(size)
 tess.left(90)
 tess.forward(100)
 tess.right(90)
 equilateral_triangle(100)
 tess.right(90) # point of departure
 tess.forward(100)
 tess.left(90)

def any_shape(sides, length):
 for _ in range(sides):
 tess.forward(length)
 tess.right(360 / sides)

paper_sissors_rock.py

import random

choices = ['paper', 'sissors', 'rock']
chosen = random.choice(choices)

while True:
 msg = 'Type one of following {}: '.format(' '.join(choices))
 usr = input(msg)
 if usr in choices:
 break
 print('Please choose a correct choice')

print('computer choses: {}'.format(chosen))

if usr == chosen:
 print('The result is a tie!')

if usr == 'paper':
 if chosen == 'rock':
 print('paper wins')
 else:
 print('rock wins')

if usr == 'sissors':
 if chosen == 'paper':
 print('sissors wins')
 else:
 print('rock wins')

if usr == 'rock':
 if chosen == 'sissors':
 print('rock wins')
 else:
 print('paper wins')

turtle_queue.py

from turtle import Turtle, exitonclic